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These are the notes that I used to give a talk in the student-led 3-manifold seminar at UC Berkeley, fall

2023, demonstrating that the Conway knot is not slice. The result was famously proved by Lisa

Piccirillo in 2018, and appeared in the Annals in 2020. As is the nature of a chalk talk, these

accompanying notes are very rough and may contain typos, approximations, and errors.

1 Preliminary Definitions

1.1 Concordance and Slice

Knot theory concerns itself with understanding complexity of a knot. There are tons of invari-
ants that say something about this, like the classical polynomials: Jones, Alexander, Conway,
HOMFLY-PT. There are more geometric measures of complexity, such as Seifert genus and slice
genus. There are also the quantum invariants like knot floer homology, and Khovanov homology.
Given a knot, the silly question to ask is how much work do I have to do to try and unknot this
guy? The first result that one learns is that in dimension 3, there are some knots that cannot
be unknotted. Knotting are detected by things like Seifert genus, polynomials, etc. Moving to
one dimension higher though, the knotting disappears. There is a way to homotope the knot to
change crossings so that eventually one gets to the unknot.

Figure 1: Unknotting analogue a dimension down.

In the picture above, the “crossing” is drawn a dimension down. Restricted to the plane, there is
no way to unknot the two components, however adding a third dimension allows one to move the
point out of the circle.
Though knotting is a codimension 2 phenomena, it has significant consequences on the topology of
not just three manifolds, but four manifolds too. Descriptions of handlebodies arise as performing
integral surgeries along knots living in the boundary of a three-sphere, and understanding the
interactions between knots and tangles in this setting allows us to pictorially represent isomor-
phisms or more general maps between four manifolds. Conversely, the notions of topological vs
smooth embeddings diverge in dimension 4, which allows us to explore subtle differences in pairs of
knots by placing them in some ambient simply-connected 4-manifolds. Simply put, understanding
4-dimensional topology is the same as understanding knots.

Definition 1.1. Let K0, K1 ⊆ S3 be two knots. Then K1 is said to be concordant to K2 if there
exists a smooth embedding of the annulus C : S1×[0, 1] ↪→ S3×[0, 1] such that C(S1×{0}) = K0,
and C(S1 × {1}) = K1. We denote concordance by K0 ∼c K1.
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A knot is concordant to the unknot if and only if it bounds a disc in S3. Hence, if K ∼c U , then
by capping the unknot off by a disc, we motivate a new definition:

Definition 1.2. Let K0 ⊆ S3 be a knot. Then K0 is said to be smoothly slice if it bounds a disc
in B4, where we think of S3 = ∂B4. This is equivalent to K0 being concordant to the unknot.

Figure 2: Concordance and sliceness.

Here notice that we said smoothly concordant or smoothly slice - there is an equivalent notion
in the case that we only require locally-flat embeddings. We call this topologically concordant.
If we were to ask simply for topological embeddings (homeomorphisms onto its image), then we
would run into the problem that every knot would be topologically slice - any knot on the boundary
S3 bounds a topological disc in B4, which we get by taking the cone on K0 inside B4.

Figure 3: All knots are “topologically” slice if we’re not careful!

One can alternatively state the above in terms of the slice genus :

Definition 1.3. The slice genus of a knot K ↪→ S3 is the minimal genus of a smoothly embedded
surface S ↪→ B4 whose boundary is ∂S = K.

With this in mind, a knot is (smoothly) slice if and only it has slice genus 0.
Results from the 80s classify topologically slice knots:

Theorem 1.4 (Freedman 83). Any knot with Alexander polynomial 1 is topologically slice.

The question is, does the work of Freedman extend to smooth sliceness? The answer is no - the
result of Freedman (also due to work of Donaldson) is purely topological. In general, the answer
is still no - we know that there are knots with Alexander polynomial 1 that are not smoothly slice.
Showing this is very difficult, since many slice obstructions obstruct sliceness altogether.
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1.2 Mutations of Knots

I’ll turn our attention to a particular class of knots, namely mutations of knots.

Definition 1.5. Let K0 be a knot in S3. Suppose we can find a Conway sphere of K0: that is,
a smoothly embedded S2 in S3 which intersects K0 in four distinct points. The Conway sphere
separates S3 into two 3-balls, Int(S2) and Ext(S2). Applying an involution to Int(S2) and gluing
it back so that the tangles are connected, the new knot K1 formed by this operation is called a
mutant of K0. If this new knot K1 inherits a well-defined orientation from K0, this knot is called
a positive mutant.

The most classic examples of mutant knots are the Conway knot, and the Kinoshita-Teresaka
knot. These are particularly of interest when discussing whether two knots are concordant. For

Figure 4: The Conway knot and the Kinoshita-Teresaka knot

example, we know that the Conway knot and Kinoshita-Teresaka knot have Seifert genus 3 and 2
respectively, but their concordance remained unknown for 50+ years. Results of (probably some
guy but I can’t find a reference oops) showed that the Kinoshita-Teresaka knot is slice (concordant
to the unknot), but it was unknown whether the Conway knot is slice. Many knot invariants are
preserved by mutations of knots, which makes tackling this problem very tricky. The genius of
Piccirillo was to turn attention away from the Kinoshita-Teresaka knot, which we already knew
to be slice, and to another knot.

2 The Conway knot is not slice

The fundamental theorem used in Piccirillo’s proof is due to Rasmussen:

Theorem 2.1 (Rasmussen, 2010). If K is slice, then s(K) = 0.

We will circle back to precisely what the s-invariant is (should we have time). Naively, one would
want to tackle this problem by studying the mutant knot. But this is known to be slice, and
none of the invariants that we have can distinguish sliceness between positive mutants (at least
the s-invariant of a knot does not, in fact no abelian invariants can).
Instead, we can study an auxilliary knot closely related to the Conway knot, whose sliceness would
be equivalent to sliceness of the Conway knot.
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Piccirillo’s approach is as follows:

1. Study 4-manifold equivalent definitions of sliceness. Show that a knot is slice if and only if
its knot trace can be smoothly embedded in S4.

2. Exploit this by finding a knot K ′ that

a) has the same knot trace as the Conway knot C, and

b) show that this knot is not slice.

By showing that this knot is not slice, since C has the same knot trace as K ′, its knot trace cannot
be smoothly embedded in S4, and hence the Conway knot is not slice either.

2.1 A 4-manifold repackaging of sliceness

We can repackage the notion of sliceness into one that concerns only smooth embeddings of 4-
manifolds into other 4-manifolds.

Definition 2.2. Let K : S1 ↪→ S3 be a knot. Then the trace of a knot K is the 4-dimensional
handlebody constructed by attaching a 0-framed 2-handle to a 4-ball.

We can construct the knot trace from a knot K : S1 ↪→ S3 as follows. Consider the boundary
of B4 to be the copy of S3, so that K ↪→ ∂B4. We can take a tubular neighbourhood of this
knot in S3, and let it be the attaching region of a 2-handle. More preceisely, we can think
of attaching a 2-handle to a 4-ball in terms of the attaching circle, in this case K, along with a
trivialisation of the normal bundle describing how one extends this attaching circle to an attaching
region. One can think of the boundary of X(K) as the 0-framed surgery on K ↪→ S3, S3

0(K) :=
(S3 \ νK/S3) ∪ (D2 × S1).

Theorem 2.3. A knot is smoothly slice if and only if its knot trace X(K) smoothly embeds into
S4.

This is a trickle down observation from the trace embedding lemma, originally given by Fox and
Milnor in 1958. Luckily the proof of this is not too bad!

Proof. ( =⇒ :) Suppose that K is slice. The schematic of this looks like

Then think of S4 = B1 ∪S3 B2, with K : S1 ↪→ S3 living in this separating hyperspace. Since K
is slice, K bounds a 2-disc in B1, In particular, we can take a tubular neighbourhood of the disc
D2 bounded by K, which will give our handle. On the other side of S3, we can glue B2 to B1,
which gives us back S4. Sitting inside all of this, we can see that we end up with a copy of the
knot trace, given by B2 along with this thickened disc bounded by K, and glued along K with
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framing 0. You have to be a little careful about making sure that this actually has framing 0, but
this simply just involves being a little bit careful about how you take the tubular neighbourhood
of the bounding disc.
( ⇐= :) Let’s suppose that the knot trace embeds in S4. We want to show that K bounds a
disc in B4. A sort of naive idea would be to say that if we have an embedding X(K) ↪→ S4,
then it is clearly not surjective, and so we can just restrict it to be some X(K) ↪→ B4. On the
other hand, the core of the 2-handle on X(K)is a disc that has boundary K. So we may think to
compose these maps and end up with some embedding of the disc whose boundary is K in B4.
But we run into some problems here with this argument, since a priori the smooth embedding of
X(K) ↪→ S4 does not necessarily preserve as the boundary of the core as the knot K. In general,
diffeomorphisms of spaces need not preserve knotting. We need to a little more careful about how
we choose to restrict from S4 to B4.
Hence the way to circumnavigate this problem is to pass to a local picture, where one can make
such a claim∗. We know that we want to build a disc out of the core, since it seems the most
natural, so we just have to choose a restriction of S4 to B4 that keeps the data of K. To do this
then, look at the core of the handle, along with the cone on K in X(K) sitting inside S4. Since
X(K) smoothly embeds in S4, then we can compose the inclusion of a piecewise-linear S2 ↪→ S4,
meaning that there is a copy of S2 ↪→ S4, which fails to be smooth only at a singular point (the
cone point p). Now look at W := S4 \ ν(p). Then W is diffeomorphic to B4, and K sits in the
boundary of W . Moreover, the image of S2 \ ν(p) is a copy of D2. But this embedding remembers
the structure of the cone, in particular, one can choose a neighbourhood ν(p) sufficiently small so
that W intersects this copy of D2 precisely in K.

Alright, so this deals with the first part of Piccirillo’s approach. Let’s go on to the second part.

2.2 An auxiliary knot

Now that we’ve seen that a knot is slice if and only if its knot trace smoothly embeds into S4, then
one possible approach would be to study a knot which admits the same knot trace as the Conway
knot, and study its sliceness. The first part of this is done using a more classical approach, i.e.
RGB diagrams and kirby calculus, and the second is using Rasmussen’s s-invariant for knots.

∗I think to be precise about this statement, one would require some form of orientation preservation for the
maps involved
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2.2.1 RGB diagrams

Let L be the 3 component link in S3

Figure 5: Link diagram of an RGB link.

Satisfying the following three properties:

1. L can be isotoped so that B ∪R is isotopic to B ∪ µB,

2. L can be isotoped so that G ∪R is isotopic to G ∪ µG, and

3. B and G have lk(B,G) = 0.

We can build a 4-manifold out of L as follows. Consider R as the attaching of a 1-handle in dotted
circle notation, and B and G as the attaching circles of 0-framed 2-handles †

From L, one can construct two knots K and K ′ via handleslides, and what will arise will be
attaching a 2-handle to a 4-ball with framing 0 (the knot trace).
The construction runs as follows:

1. Do a handleslide of G over B. Now R bounds a disc, DR, with B intersecting DR once, and
G does not intersect DR at all.

2. Cancel 0 surgery on B by the 1-handle R.

†If you haven’t seen dotted circle notation before, well now you have! The idea though is that if you think
about the attaching of a 1-handle to a 4-ball, the attaching spheres are actually two two spheres in S3. But there’s
a way to cancel 1-handles by 2-handles, and so its actually enough to specify the attaching region of a 1-handle by
the attaching region of the 2-handle that cancels it. We can treat R then as a sort of 0-framed 2-handle.
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We can do the same thing while interchanging the roles of G and B and get another knot. Hence,
this construction gives rise to two potentially distinct knots, whose knot traces are diffeomorphic:

Theorem 2.4. Via RGB-diagrams, X(K) ≃ X ≃ X(K ′).

We can use this to create a new knot K ′ that shares a knot trace with the Conway knot C. From
the construction above, it is not clear that we can do this for all knots - however it does work in
the case that a knot has uncrossing number one.

Proposition 2.5. Let K be a knot with uncrossing number one. Then there exists a link L and
a 4-manifold X such that X ≃ X(K).

This is good for us, as the Conway knot has uncrossing number one.

Proof. Start with a blue diagram of K, which we will henceforth denote by B, with (wlog) positive
uncrossing crossing c. Then let R be a pushoff of B with crossing c changed to negative, linking
B with −w(D) + 2 and a blackboard parallel of B outside of this neighbourhood of c. Let G be a
meridian of R. We define X to be the 4-manifold with R representing a 1-handle in dotted circle
notation, and B and G representing attaching circles of 0-framed 2-handles. Now, by choice G

Figure 6: Construction of an RGB link for a knot with uncrossing number one.

and R are a cancelling pair, and so this 4-manifold is the same as the knot trace of B. What we
want to do though is show that this actually arises from an RGB link (that we can get it into this
form).
How do we go about that? Well, one can slide B over R to get the second frame. The knot
diagrams of B and R have linking number −1, hence the resulting framing on B is −2. Here now,
B is a meridian of R. We can introduce a Reidemeister I. move to B to get a little twist, and
then do a handle slide of B over R again to get the third frame. One can then show that you can
isotope R to be a meridian of the blue knot, and one can read off that lk(B,G) = 0. ‡

With this result established, we can now apply it to the Conway knot. We will proceed as follows:
take the Conway knot (which we will consider as the blue knot), run this construction from
above, isotope it to a point where it exhibits the RGB link, perform the necessary handleslide and
cancellation of the 1 and 2-handle pair, and arrive at another knot whose 0-framed surgery gives
the same knot trace as the Conway knot.

‡A note on the Kirby calculus at play here: it took me a bit of time to really understand what was going on
here, since it’s hard to imagine this whole picture when we only have a small neighbourhood of a crossing in front
of us. I recommend trying this construction with a simple knot such as the positive trefoil to see what’s happening.
There are also many different ways to find the linking number of two components, which can be confusing. The
best way I thought about it was via orienting the knots in the canonical way, and the applying the algorithmic
approach - see the wikipedia for linking number for this!
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This auxiliary knot has diagram

Figure 7: Auxiliary knot.

2.3 K ′ is not slice

Doing all this, we now have a a knot K ′ whose knot trace is diffeomorphic to that of the Conway
knot. The final step in proving that this knot K ′ is not slice is done via Rasmussen’s s-invariant
of a knot, coming from Khovanov Homology. My goal for the rest of the talk is to give a very
brief overview of what this invariant is, and what it does.
Recall the theorem from before:

Theorem 2.6 (Rasmussen, 2010). If K is slice, then s(K) = 0.

More generally, the s-invariant gives a lower bound for the slice genus of a knot. I am unaware
of the extend of how good this bound is, or when equality holds, but clearly in the case that it is
slice, it must be that s(K) = 0, since slice genus is always nonnegative §.
The general bound is: |s(K)| ≤ 2g∗(K).

2.3.1 A rough exposition of Khovanov Homology

Khovanov homology assigns to a knot K a homology group which arises from studying the cube
of resolutions of a diagram representing K. To construct the cube of resolutions, take a knot (or
link) K, and study all possible resolutions of the diagram. Resolutions form the vertices of the
cube, and vertices are adjacent by edges relating two diagrams by a resolution change. If there
are k crossings in K, then we can record the data of these resolved diagrams and their relations

§While reading Piccirillo’s paper I became interested in maps between Khovanov homology for RGB- and
mutant-related links. Due to Bar-Natan, Khovanov homology is invariant under positive mutation, and hence since
the Kinoshita-Teresaka knot is slice, it has s(KKT ) = 0. Since KKT and C are positive mutants, it follows that
s(C) = 0. This disproves the converse of the theorem above.
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via cobordisms by a k-dimensional cube. In particular, notice that two different resolutions of the
same crossing are related by a saddle cobordism. A great example of this is drawn in Kauffman’s
Introduction to Khovanov Homology, Figure 2.

Figure 8: Cube of resolutions for the positive trefoil.

From this cube of resolutions, one can construct a chain complex (actually a cochain complex)
by applying a 1+1 dimensional TQFT to the cube of resolutions. This just a fancy way of
saying: replace each vertex of the cube by some group A(v), and each edge by a map A(e). Then
CKh(K) = ⊕v∈VA(v), and for x ∈ A(v),

d(v) =
⊕

{e∈E | v∈e}

±A(e).

There is a homological grading of each element, given by

gr(x) = gr(v) = |v| − n−,

where |v| is the number of 1’s in the coordinates of v, and n− is the number of negative crossings
in K ¶. In particular, d increases homological grading by 1. The resulting cohomology of this
chain complex is defined to be the Khovanov Homology of K.
Using a slightly different TQFT, one can write a similar story and end up with a homology theory
known as Lee’s Homology of a knot, LKh(K). These two homology theories are related by a
spectral sequence. The grading on CKh(K) carries through to Lee’s complex, although it does
not play quite so well with the boundary operator. However, it does define a filtration on the Lee
complex, and unpacking this allows us to induce a grading on LKh(K). Unpacking all of this,
one can show that the minimum and maximum grading of a nontrivial element of LKh(K) differs
by 2, and hence we can define the s-invariant of K to be the number sitting in-between these
gradings ‖.

¶Khovanov homology is really a bigraded homology theory, with the second grading called the quantum grading.
For introductory work, see Kauffman’s Introduction to Khovanov Homology, or actually in this case Rasmussen’s
Khovanov Homology and the slice genus is a very good reference. The only interesting thing I will say is that the
boundary map must preserve the quantum grading of the vertex.

‖These sort of invariants are rife in quantum and floer theory, and can be used to detect subtle behaviour which
classical invariants seem to miss. Most importantly for us, the s-invariant can almost detect slice genus
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2.3.2 Returning to Piccirillo

Returning to the original problem at hand, we want to show that K ′ has s(K ′) ̸= 0, so that K ′

and C are not slice. To do this, we need the following result:

Theorem 2.7. For any knot K, the generators of Lee Homology are located in gradings (i, j) =
(0, s(K)± 1). If K is slice, then s(K) = 0.

To prove the rest of the result, it suffices to compute the Khovanov/Lee homology of the knot, and
identify the gradings in homology is nontrivial, and in which elements have homological grading
i = 0.
There are computationally fast algorithms in which this can be done due to Bar-Natan, and the
result shows that K ′ has Khovanov homology supported in gradings (0, 3), (0, 1) and (0,−1).
Hence, by the theorem, s(K ′) ∈ {0, 2}.
One can show that s(K ′) = 2 by studying the bigrading of Lee homology and its interplay with
the spectral sequence arriving from Khovanov homology, which forces the quantum grading to be
2. In other words, s(K ′) ̸= 0, and thus the Conway knot is not slice.
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